Nutrient-driven incretin secretion into intestinal lymph is different between diabetic Goto-Kakizaki rats and Wistar rats.
نویسندگان
چکیده
The incretin hormones gastric inhibitory polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) augment postprandial glucose-mediated insulin release from pancreatic beta-cells. The Goto-Kakizaki (GK) rat is a widely used, lean rodent model of Type 2 diabetes; however, little is known regarding the incretin secretion profile to different nutrients in these rats. We have recently shown that lymph is a sensitive medium to measure incretin secretion in rodents and probably the preferred compartment for GLP-1 monitoring. To characterize the meal-induced incretin profile, we compared lymphatic incretin concentrations in the GK and Wistar rat after enteral macronutrient administration. After cannulation of the major mesenteric lymphatic duct and duodenum, each animal received an intraduodenal bolus of either a fat emulsion, dextrin, a mixed meal, or saline. Lymph was collected for 3 h and analyzed for triglyceride, glucose, GLP-1, and GIP content. There was no statistical difference in GIP or GLP-1 secretion after a lipid bolus between GK and Wistar rats. Dextrin and a mixed meal both increased incretin concentration area under the curve, however, significantly less in GK rats compared with Wistar rats (dextrin GIP: 707 +/- 106 vs. 1,373 +/- 114 pg ml(-1) h, respectively, P < 0.001; dextrin GLP-1: 82.7 +/- 24.3 vs. 208.3 +/- 26.3 pM/h, respectively, P = 0.001). After administration of a carbohydrate-containing meal, GK rats were unable to mount as robust a response of both GIP and GLP-1 compared with Wistar rats, a phenomenon not seen after a lipid meal. We propose a similar, glucose-mediated incretin secretion pathway defect of both K and L cells in GK rats.
منابع مشابه
Duodenal-jejunal bypass and jejunectomy improve insulin sensitivity in Goto-Kakizaki diabetic rats without changes in incretins or insulin secretion.
Gastric bypass surgery can dramatically improve type 2 diabetes. It has been hypothesized that by excluding duodenum and jejunum from nutrient transit, this procedure may reduce putative signals from the proximal intestine that negatively influence insulin sensitivity (SI). To test this hypothesis, resection or bypass of different intestinal segments were performed in diabetic Goto-Kakizaki and...
متن کاملLong-term renal changes in the Goto-Kakizaki rat, a model of lean type 2 diabetes.
BACKGROUND Type 2 diabetes has become the single most frequent cause of end-stage renal disease. The Goto-Kakizaki rat is currently used as a model for lean type 2 diabetes, but its renal changes have not been fully characterized. We investigated long-term functional and structural renal changes in the Goto-Kakizaki rat to evaluate if this animal model resembles the changes observed in human di...
متن کاملDelta Cell Hyperplasia in Adult Goto-Kakizaki (GK/MolTac) Diabetic Rats
Reduced beta cell mass in pancreatic islets (PI) of Goto-Kakizaki (GK) rats is frequently observed in this diabetic model, but knowledge on delta cells is scarce. Aiming to compare delta cell physiology/pathology of GK to Wistar rats, we found that delta cell number increased over time as did somatostatin mRNA and delta cells distribution in PI is different in GK rats. Subtle changes in 6-week-...
متن کاملHypoglycemic effect of Chlorella vulgaris intake in type 2 diabetic Goto-Kakizaki and normal Wistar rats
The aim of this study was to examine the hypoglycemic effect of chlorella in 6 week-old type 2 diabetic Goto-Kakizaki (GK, n=30) rats and 6 week-old normal Wistar (n=30) rats. Animals were randomly assigned to 3 groups respectively, and were fed three different experimental diets containing 0%, 3% or 5% (w/w) chlorella for 8 weeks. In diabetic GK rats, the insulinogenic-indices were not signifi...
متن کاملInterdependency between mechanical parameters and afferent nerve discharge in remodeled diabetic Goto-Kakizaki rat intestine
Background Gastrointestinal disorders are very common in diabetic patients, but the pathogenesis is still not well understood. Peripheral afferent nerves may be involved due to the complex regulation of gastrointestinal function by the enteric nervous system. Objective We aimed to characterize the stimulus-response function of afferent fibers innervating the jejunum in the Goto-Kakizaki (GK) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 296 2 شماره
صفحات -
تاریخ انتشار 2009